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Abstract—This paper describes an architecture and elements 

for an integrated prognostic bearings reasoner. The goal of 

the reasoner is to arrive at a reliable measure of damage 

accumulation, quantify its confidence, and aid in the 

assessment of remaining life. The reasoning integrates in-

flight and post-flight functions. During flight, the tasks are 

primarily diagnostic and assess damage in real time using 

input from a plurality of sources, both sensor-based and 

model-based. The damage assessment is further refined after 

conclusion of the flight with full-order models and 

additional information from historical failure data, 

operational data, and inspection data. Load profiles from 

future missions are used to calculate the damage propagation 

which will allow the reasoner to assess remaining life. This 

paper will lay out the overall process and then focus in more 

detail on the in-flight reasoner. The operation of the 

architecture is demonstrated for bearing prognosis via an 

illustrative example. 
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1. INTRODUCTION 

Prognosis has been recognized as the “Achilles heel” [10] of 

condition-based maintenance (CBM). Here, the idea is to 

assess the condition of the system and perform maintenance 

when it is warranted. This is a departure from the traditional 

maintenance practice where components are managed to life 

limits based upon fleet wide statistics and average expected 

usage.  The latter conservative approach requires the 

replacement of parts irrespective of how much of its useful 

life is actually expended. And indeed, most parts to be 

replaced under this philosophy still have a substantial 

amount of “life” left.  If it were possible to account for the 

variability inherent to part manufacturing and operation, it 

should also be possible to change the life-limited 

replacement strategy to a condition-based parts replacement 

strategy [1], thus resulting in reduced cost of ownership with 

the same safety margin. If one could furthermore estimate 

the remaining life of a component, the whole paradigm of 

fleet management could be changed because it would be 

possible to not only perform maintenance at a convenient 

place and time taking into account variables such as part and 

staff availability, shop loading, etc. but also to plan more 

reliably future missions. To that end, a DARPA-sponsored 

program (of which the work reported herein is a part) 

addresses engine prognosis using advanced physics-based 

models, state-awareness sensors, and a prognostic reasoner  

to compute component capability and to quantify prediction-

related variability and to provide system-wide capability 

assessment [2]. 

The physics-based models deal with mechanisms governing 

incipient damage at the material level, factoring in both full 

finite-element and reduced-order formats. The state 

awareness sensors measure material and system damage 

state, identify engine operation conditions, and update 

model predictions with advanced signal-acquisition and 

signal-conditioning methodologies. Finally, the prognostic 

reasoner fuses sensor and model-based information to assess 

residual component capability, calculate the uncertainty 

level for system predictions, and project a safe operational 

envelope for near-term engine usage [2]. 

This paper will focus on the prognostic reasoner 

demonstrated on the bearing systems. During bearings 

operation, initially localized spalls can initiate that may 

grow and ultimately result in loss of function. Important 

factors affecting damage initiation and damage propagation 

are changes in bearing loads and environment.  Lubrication, 

presence of material defects, surface degradation, and 

external contamination all factor in to the bearing 
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environment. Subsurface fatigue cracks are induced at 

locations of peak shear stress, become surface-connected, 

and lead to eventual liberation of material. It is important to 

assess the microstructural evolution, environmental 

embrittlement, cyclic hardening, and residual stress to 

calculate the propagation of bearing damage. The current 

state is determined by feeding direct sensor data and indirect 

parameters computed from sensor data into an ensemble of 

diagnostic algorithms as a basis for input to the fault-

evolution and life models [2]. The information sources that 

the reasoner will rely on may potentially be obtained at 

different times during or in between flights and have 

different prediction horizons. They arrive at their conclusion 

either by direct measurement, models supported by 

measurements, or are simply triggered by measurements.  

The reasoner described in this paper is represented as a 

multi-layered architecture comprising pre-processing, 

analysis, and post-processing steps. These steps are 

partitioned into modules where each module performs 

supporting tasks for both information processing and 

uncertainty management. In particular, the pre-processing 

step is partitioned into a temporal module that addresses 

issues surrounding the different time scale and sampling 

frequency of the information sources. In addition, the pre-

processing step addresses how to deal with the different 

reliabilities of the information sources. The analysis step is 

partitioned into strengthening and weakening modules. 

These modules aggregate information sources of the models’ 

output, the evidential sensor information, and the supporting 

extraneous information. They also strengthen or discount the 

found estimate using first principle and domain knowledge. 

The post-processing step is structured into exception 

handling modules that refine the output by dealing with 

special case situations. 

2. BACKGROUND 

Information Fusion 

Finding synergy in using different information sources to 

assess system states has a long tradition within the fields of 

multivariate statistics and pattern recognition. Recently, the 

field of information fusion, and more specifically multi-

classifier fusion has been recognized as a research area in its 

own right. Fusing information for prognostic purposes is a 

fairly new endeavor and will likely lead to the development 

of new techniques that are specialized to perform related 

tasks. Generally, techniques that lend themselves for 

prognostics are those that can provide continuous output. 

That means some classification techniques are not as readily 

applicable in the prognostic context because they provide 

only categorical output which would need to be artificially 

converted back into the continuous domain. However, if the 

answer sought is within the resolution of the answer bins 

provided, this may be an acceptable approach after all. 

Another big player in this context is the uncertainty 

associated with any estimate. If the uncertainty bounds are 

very wide, it does not make sense to demand a high 

resolution output. Rather, the output resolution should be 

commensurate with the residual uncertainty. In light of that, 

tools that lend themselves readily for a prognostic 

application would be fuzzy logic (in particular TSK-type 

models that provide functional output), neural nets, wavelet 

neural nets, or hybrid neuro-fuzzy techniques such as 

ANFIS [3]. Categorical classifiers that deal well with 

uncertainty integration include for example, Dempster-

Shafer models, as well as others. 

Sensors for Bearing Prognostics   

Within the context of bearing prognostics, the particular 

requirements of bearing wear and bearing failure need to be 

taken into account. Here, wear particles build up over time 

even under normal operating conditions [4], leading to 

gradual damage accumulation that will introduce a bias of 

the starting point when faults occur. Particles generated by 

normal wear differ from particles seen during “abnormal” 

conditions such as spalling. Wear particles can be 

characterized with respect to their quantity, size, 

composition, and morphology [5] and therefore it would be 

desirable to capture and analyze those particles. While it is 

in practice easy to collect and measure the quantity of 

particles generated by debris collecting devices that are 

located in the oil scavenge line, it is somewhat more difficult 

to assess their morphology in an on-line application. 

However, the oil debris monitor counts the particles in bins 

of varying size ranges from which average particle size per 

bin can be computed. In addition, the cumulative mass can 

be calculated. 

In addition to oil debris information, vibration information 

can be important to assess the onset of bearing failure. 

Vibration analysis has been proven to be very useful in 

machinery failure analysis [6]. Features from various 

transforms such as Fourier, Hilbert, and Wavelets can be 

useful in detecting and categorizing incipient faults. Indeed, 

vibration is a very sensitive measure that allows the early 

detection of bearing faults. This comes at the price of 

sensitivity to environmental effects [7] which are sometimes 

difficult to quantify or correct. In an aircraft engine, and in 

particular in a military engine, these changes can be 

significant. In contrast, oil debris feature provide relatively 

more reliable failure information [7].  

It is appropriate to aggregate vibration and oil debris 

information to take advantage of the benefits of both. The 

fusion of information from oil debris and vibration 

information, along with knowledge about system and 

machinery history can result in interactions that may 

improve the confidence about system condition [4]. Howard 

and Reintjes [8] describe the benefits of using several 

information sources for fault detection, and discuss oil 

debris and vibration for helicopter gearboxes in particular. 
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Byington et al. [4] describe a fusion technique that 

correlates the failure mode phenomena with appropriate 

features. Dempsey et al. [7] report on the use of fuzzy logic 

to integrate oil debris and vibration information for gearbox 

faults where the output was quasi-action recommendations 

such as “OK, inspect, shutdown”. 

Prognostic Fusion  

Integrating the capabilities and performance of the 

individual sensor systems and models through probabilistic 

weighting tools such as Bayesian and Dempster-Shafer 

allows the incorporation of a priori knowledge which has the 

promise to boost the performance of the overall system. In 

the example described by Orsagh et al. [1], model-based 

techniques were used when no diagnostic indicators were 

present and information derived from sensors such as oil 

debris sensors and vibration sensors were used when failure 

indicators are detectable. An important performance 

improvement is seen in allocating the weights to the 

information sources dynamically depending on whether the 

component is considered early or late in its remaining useful 

life cycle. 

Other aggregation techniques include neural net based fault 

detection algorithms using Principal Component Analysis 

(PCA)  output of a Fast Fourier Transform [9], and  dynamic 

wavelet neural networks [10]. Garga et al. [11] describe a 

hybrid reasoning approach that is capable of integrating 

domain knowledge with test and operational data from an 

industrial gearbox. In this approach explicit domain 

knowledge is expressed as a rule-base and used to train a 

feedforward neural network.  

The reasoner described in this paper will extend these 

findings by integrating a full spall model into the 

aggregation scheme and in addition by breaking the 

reasoning task into different modes. The modes are defined 

by either in-flight, post-flight, and future mission capability. 

This will allow to focus on more diagnostic tasks with short-

term prognostic emphasis in the in-flight and post-flight 

mode. The future mission capability mode is entirely tasked 

with assessing remaining life given a set of future missions 

described by load and flight envelope conditions. Below we 

will examine the different modes in more detail. The 

remainder of the paper will then describe the work to date 

on the in-flight reasoner. 

3. INTEGRATED REASONER OPERATING MODES 

As mentioned above, the prognostic reasoner considered 

here is really a set of reasoners that will operate at various 

times during and after the flight. Depending on the time 

during or after a mission, its tasks will vary from 

aggregation of damage information to supporting the 

calculation of a remaining life estimate.  

 

In-Flight Mode 

During the flight, there are a number of information sources 

such as information derived from sensors that inform about 

the presence of bearing damage (Figure 1). Specifically, this 

information encompasses features derived from 

accelerometers that measure and assess vibration.  

Furthermore, information from debris monitoring devices is 

also used as a sensor-based input to the reasoner.  In 

addition, a spall propagation model will provide information 

about the size and rate of increase of spalls. This model will 

use triggers from the reasoner to initiate its operation. That 

is, it will be dormant in the absence of evidence of bearing 

damage and fleet-wide statistics on bearing fatigue are used 

for low-level damage accumulation. Therefore, the reasoner 

will initially have to reliably provide diagnostic information 

about bearing damage to the spall propagation model.  Once 

bearing damage has been established and the spall 

propagation model has been triggered, it will also need to 

integrate the information from the spall propagation model 

with the vibration and debris information. 
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Figure 1 – In Flight Reasoner 

 

Post-Flight Mode 

During Post-Flight evaluation, the reasoner performs very 

similar tasks compared to the In-Flight tasks. However, 

while in-flight constraints may predicate reduced order 

models for the calculation of damage, the post-flight 

assessment allows for a full-order model to be run. It will 

rely on data that were collected during flight. In addition, 

there may be additional diagnostic information from 
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maintenance, inspections, historical observations, etc. that  

can help to refine the diagnostic assessment about bearing 

damage. Figure 2 illustrates the post-flight scenario. 
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Figure 2 – Post-Flight Reasoner 

 

Prognostic Mode 

If a fault has been detected, the prognostic functions are 

executed on a set of future missions. Specifically, missions 

characterized in part by sequences of load, speed, and 

ambient conditions are used as input to the spall propagation 

model. In conjunction with the current damage state, the 

output of the spall propagation model will provide a damage 

profile into the future. This is illustrated in Figure 3. 

 

The future mission prognostic reasoner has the form of a 

relatively simple decision logic that establishes whether an 

upper allowable damage limit has been surpassed for the 

given mission mix. There are different ways by which the 

reasoner can operate here based on user demand. In one 

instantiation, it will report both the profile of remaining life 

and information whether the envisioned missions can be 

completed without tripping the acceptable damage limit. In 

another instantiation, it will provide information back to the 

mission generation to prompt for additional mission runs 

when damage limits have not been reached. The goal of 

executing the damage propagation model with additional 

runs is to determine the damage propagation profile and to 

find the remaining life limit. 

 

If no fault has been detected, the prognostic module gets de 

facto bypassed and is replaced by fleet statistics that are 

compiled on bearing fatigue data. 

 

Figure 4 illustrates how the modules of the integrated 

bearing reasoner are connected. Note that during model 

development, the different modules are tuned off-line using 

raw data and ground truth data obtained during rig tests.  
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Figure 3 – Future Mission Prognostic Reasoner 
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Figure 4 – Interactions of Integrated Bearing Reasoner 

Modules
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4. IN-FLIGHT REASONER MODULES 

The primary goal of the in-flight reasoner is to aggregate 

information from several sources to provide more reliable 

diagnostic and prognostic estimates than an estimate from a 

single source alone. Figure 5 shows the scheme of the 

proposed in-flight reasoner concept. It consists of two 

fundamental integration functions: integrating the outputs of 

individual damage models and evidential information and 

integrating domain knowledge. The two integration 

functions operate independently. While the damage model 

output and the evidential information are fed to the reasoner 

as inputs, domain knowledge is coded inside the fusion 

algorithms. Such independent integration design provides 

users the flexibility of adding more information sources and 

to integrate more domain knowledge or tune existing 

heuristics. 

 

Figure 5 – Concept for In-Flight Reasoner 

 

There are numerous approaches such as bagging and 

boosting [12], Dempster-Shafer [13], model-based 

approaches [14], fuzzy fusion [15] or statistics based 

approaches [16] that attempt to address the core aggregation 

functions. However, it has to be realized that the aggregation 

itself is only one function of the overall reasoner. In addition 

to combining information, it has to be ensured that the 

information that is being used provides the maximum 

information content. There are a number of issues that need 

to be dealt with prior to the actual aggregation. Specifically, 

the information needs to be checked for consistency, and it 

needs to be cleaned of outliers, noise, faulty or otherwise 

bad sensor information, it needs to be conditioned and 

formatted to allow a proper comparison. In addition to that, 

special cases need to be taken into account which, 

depending on the situation, should be done either before or 

after the actual aggregation step. To assist in these tasks, we 

suggest employing a sequential and parallel multi-layered 

configurations strategy. Elements from this configuration 

strategy have been proven successful in diagnostic fusion 

environments within project IMATE [17]. There, a 

hierarchical, multi-layer architecture [18] was demonstrated 

that implemented some of these concepts. Information from 

various diagnostic models and evidential information 

sources was combined and manipulated through a series of 

steps that increased and decreased the weight given to the 

information sources according to the strategies implemented 

in the respective layers of the fusion process.  

 

In the following section we describe algorithmic concepts of 

the in-flight prognostic reasoner. In contrast to a diagnostic 

reasoner that has the task to determine the presence of a 

fault and therefore has as its output the fault category and 

perhaps an associated confidence, the in-flight prognostic 

reasoner needs to assess the presence of an initial fault 

condition and to report on the overall damage level plus an 

associated uncertainty. The most fundamental difference is 

in the second task, namely producing a damage assessment 

output that is in continuous format. This means that different 

aggregation techniques will need to be employed.  

Fundamentally, the reasoner functions are bundled in three 

major components (Figure 6): preprocessing, analysis, and 

post-processing. The preprocessing carries the majority of 

the burden for conditioning the information to be 

aggregated. The actual aggregation is performed in the 

analysis component. Finally, special cases are being 

addressed in the post-processing component.  
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Figure 6 – Reasoner Modules 
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sensor information (e.g., non-linear readings of cumulative 

debris sensors). We discuss these issues below before 

suggesting how to take care of them.  

• Nonlinearities need to be taken into account to 

avoid illogical predictions. Nonlinearities can occur 

due to sensor noise but also, for example, when 

debris arrives at the debris monitor in irregular 

intervals. This nonlinear behavior should not 

necessarily translate into nonlinear damage 

accumulation. 

• Noise and outliers can be observed in almost any 

sensor-based system. It is important to weed out 

outliers and to make the approach robust against 

noise while at the same time preserving the 

sensitivity to actual system changes. 

• Sensor failures are a concern when the system 

depends on proper input. Recognizing sensor 

failure is typically done in a validation [19] step 

with a subsequent accommodation step 

• Saturation can be considered a special case of 

sensor failure although the sensor is not technically 

failed. A sensors footprint may be limited to a 

certain range. While the sensor should be laid out 

to be able to operate properly in within the 

parameters of the system, this is a problem that may 

occur and against which a solution needs to be 

found. The accommodation of sensor saturation 

may be similar to the accommodation of sensor 

failure. 

• Disjoint response to event The various sensors and 

sensor driven models may respond or indicate the 

event of interest at different times. The reasoner 

needs to be able to take these disjoint responses 

into account and translate them into a coherent 

output. A quick response needs to be balance with 

the need for confirmatory information. 

 

The filter module sorts out outliers and noise and resolves 

temporary disagreement. Supporting functions employ 

Information smoothing and Information fading operators 

that remove outliers and trade off conflicting information. 

 

Information smoothing—The challenge in dynamic systems 

is in providing a different reaction to situations where 

information sources agree and situations where information 

sources disagree. When information sources agree, and in 

the absence of evidence to the contrary, we postulate there is 

no reason for the fusion agent to change the collective 

opinion within that time step (there is still a minute chance 

of joint incorrect estimates). However, if information 

sources disagree, the fusion main module has to decide 

whether one source is correct and the other is not (and 

which) or whether an event has occurred that one source had 

no opportunity to see (for example because its update rate 

prevented a timely update). To help in this situation, we try 

to support the fusion main module by removing outliers and 

generally by smoothing information of individual sources in 

situations of agreement and by allowing quick updates when 

a changed event is indicated. This necessitates the need to 

provide a system status recognition tool that allows the two 

different strategies to work side by side. 

The concept of information smoothing can be implemented 

via an exponential averaging time series filter with adaptive 

smoothing parameter [20].  

 

Changes of the smoothing parameter will allow weeding out 

noise and outliers when no fault has occurred but reacting 

quickly to changes from one event to another [21].  

 

Information Fading—Besides reducing variations in 

information during information agreement, we still need a 

mechanism to deal with the disagreement where one 

information source supports status s1 at time t1 and another 

information source comes to a different conclusion s2 at a 

later time t2. It is then necessary to account for the fact that 

s2 may have occurred between t1 and t2. We postulate that 

the later status update needs to be given more weight in case 

of information disagreement to account for the possibility of 

occurrence of event s2. The question is how much more 

weight s2 (or how much less weight s1) should have. We 

further propose that the discounting is a function of time 

passed between s1 at time t1 and s2 at time t2. The reason is 

that there is a higher possibility for event s2 to occur when 

the period t2-t1 is larger and vice versa. In addition, the 

information sources must have information about their a 

priori performance. We propose to change the forgetting 

factor as the confidence value increases [22]. The idea of 

information fading is to discounting information as it ages 

when information sources disagree at different times (and no 

new update of both information sources can be obtained). 

We force the older information to “fade” as a function of 

time passed.  

 

Reliability Scaling—The scaling module implements 

functionality allowing an information source that is a more 

reliable indicator for a particular fault to be weighted more 

heavily than an information source with a worse track record 

for that same fault [23]. Clearly, there should be higher trust 

in a more reliable information source, even when a less 

reliable information source indicates a strong confidence in 

its own opinion. However, even the more reliable 

information source is occasionally incorrect, and when the 

less reliable information source happens to be correct, it 

would be a mistake to always use the more reliable 

information source’s output exclusively. Then again, it is not 

known when a particular information source is correct and 

when it is not. Therefore, we propose to use each 

information source’s information scaled by the degree of its 

reliability. This reliability is encoded as a priori information 

in the confusion matrix. More specifically, it is the diagonal 

entries of the confusion matrix which we will use to weigh 

each classification output.  
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The concept of confusion matrices is firmly established in 

the realm of classification. Specifically, it allows the 

summary view of type I and type II errors.  Table 1 shows an 

example confusion matrix. 

Table 1 – Confusion Matrix 

 Estimated no fault Estimated fault 

Actual no fault TP FP 

Actual fault FN TN 

 

Confusion matrix entries represent one operating point that 

embodies a particular tradeoff between false positives and 

false negatives. Whereas in diagnostics the aim is to classify 

a fault or precursor of a fault, a prognostics problem tries to 

make a judgment about the remaining life of a component. 

This has repercussions for the performance criteria used to 

measure the goodness of a tool and confusion matrices have 

not typically been used for prognostic evaluation. We will 

argue in the following that prognostic confusion matrices 

can be established. While it would seem a reasonable 

assumption to assess the performance by whether the 

estimate was on target or not, there will rarely be an estimate 

that is completely on the mark. However, this is in most 

cases not required anyhow. The question then is what is the 

acceptable tolerance for the problem at hand. We need to 

keep in mind that the utility of the error is oftentimes not 

symmetric with respect to zero (where the error is defined as 

the difference between actual remaining life and estimated 

remaining life).  For instance, if the prediction is too early, 

the resulting early alarm forces more lead-time than needed 

to verify the potential for failure, monitor the various 

process variables, and perform a corrective action.  On the 

other hand, if the failure is predicted too late, it means that 

this error reduces the time available to assess the situation 

and take a corrective action.  The situation deteriorates 

completely when the failure occurs before a prediction is 

made that advises of critical system state. Therefore, given 

the same error size, it is in most situations preferable to have 

a positive bias (early prediction), rather than a negative one 

(late prediction).  Of course, one needs to define a limit on 

how early a prediction can be and still be useful. 

Therefore, two different boundaries for the maximum 
acceptable late prediction and the maximum acceptable 
early one can be established.  Any prediction outside of the 
boundaries will be considered either a false positive or a 
false negative. 
 

We define the prediction error [24] as 

 (6) 
and we will report prediction results in terms of a histogram 
of the prediction error E(t). In particular, focus will be on 
two instances of E(t): 

• E(tr) - prediction error at the time when the critical 
zone (for example, within the next mission) is 
reached, and 

• E(t0) - prediction error at the time when the failure 
occurs.  

 
Incorrect classifications are typically classified as false 
negatives (FN) and false positive (FP). In the context of late 
or early predictions, these categorizations are based on the 
magnitude of deviation from true time of failure. Therefore, 
we will define the following limits as the maximum allowed 
deviations from the origin: 
 
False Negatives A prediction is considered a false negative 
if one fails to correctly predict a failure more than tfn time 
units later than the actual time to failure, i.e., E(tr) < -tfn time 
units. Note that a prediction that is late more than tr time 
units is equivalent to not making any prediction and having 
the failure occurring. 
 
False Positives A prediction is considered a false positive if 
we fail to correctly predict a failure if the prediction is more 
than tfp time units earlier than the actual time to failure, i.e., 
E(tr) > tfp time units.   We consider this to be excessive lead 
time, which may lead to unnecessary corrections. 
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Figure 7 – Relationship between Accumulated Damage 

and Remaining Life 

 

Figure 7 shows how the FP and FN are identified for a 

given prediction. It also shows the relationship between 

remaining life and accumulated damage. Figure 8 is a 

close-up of the relationship of time to failure and 

remaining life prediction. The graph also shows false 

positives and false negatives. These upper and lower 

limits are subjective and dependent on the problem 

domain 
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Figure 8 – False Positives and False Negatives in a 

Prognostic Context 

 

Using the definitions of false positives and false 

negatives as outlined above, one can then choose a 

desirable operating point for prognostics. It also allows 

the design of the confusion matrix which is required for 

the reliability scaling. 

Major Components: Analysis 

Referring back to Figure 6, the analysis module performs the 

actual fusion. The functions contain both generic fusion 

strategies as well as domain knowledge heuristics. We have 

tested a number of different fusion techniques including 

weighted averaging and adaptive neuro-fuzzy inference 

systems. The latter has the advantage of automated learning 

capability while the former relies on the user to provide the 

appropriate weights.  The two approaches mentioned both 

arrived at satisfactory results. Ultimately, the final fusion 

strategy needs to also include a provision to aggregate the 

uncertainty. For this purpose, confidence prediction neural 

networks [24] as well as typicality based approaches [25] 

and Dempster-Shafer-based regression methods [26] will be 

evaluated. 

 

Multiple-Information Rewarding—State assessments 

expressed by different information sources which all agree 

should lead to a more confident assessment of the system 

state. This is the trivial case where coinciding opinions are 

rewarded. The rewarding scheme is accomplished by 

calculating a joint confidence value using for example a T-

norm operator on the individual information source 

confidences that are in agreement.  

 

Weakening—The weakening module integrates the fault 

information from similar equipment operating in tandem 

with the equipment under investigation (such as the bearing 

on the other end of the shaft). The hypothesis is that it is 

most unlikely that the same fault occurs on both systems at 

the same time. So, if the two systems issue the fault status at 

the same time, most likely, the condition is not fault related. 

Rather, it is due to a common environmental condition. 

Hence, the fault status should be discounted [27].  

 

Major Components: Post Processing 

Layers in this component deal primarily with exception 

handling. 

5. EXAMPLE RESULTS 

To demonstrate some of the concepts introduced here, we 

will present an illustrative example. Data for this example 

were simulated using anticipated sensor behavior as a guide. 

As the development of the different modules and the test rig 

experiments advance, the simulated data will be replaced (or 

augmented) by real data. Here, we show data of simplistic 

vibration sensors, debris collecting devices, and the spall 

propagation model. Random noise was added to all sensors 

where the vibration sensor had mostly amplitude varying 

noise with zero mean while the debris monitor also was 

exposed to random walk noise that produced local non-

monotonic behavior. In addition, the debris sensor was 

exposed to a saturation type sensor fault which forced its 

upper value not to exceed a certain threshold. The fault 

event was triggered at different times for the different 

sensors but within a window of proximity. While the sensor 

behavior may not be truly reflective of the sensor behavior 

seen in the rig tests, this will allow us to test some of the 

concepts introduced earlier.  
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Figure 10 – Notional Sensor Output and Fused Output 

 

Figure 10 shows output from the different sensor modules 

and the spall propagation model as well as the aggregated 

output information over time. Initially, no fault is present 

and the vibration sensor (Figure 11 (c)) is shown to be low 

on average with some amplitude spikes due to changes in 
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operating conditions. However, at about time step 300, the 

vibration activity picks up considerably and increases in 

average amplitude before leveling out. During the no-fault 

condition, the primary task of the reasoner is to make sure 

that the spall size model is not triggered inadvertently due to 

any of the spikes. The debris monitoring sensor (Figure 11 

(b)) shows some activity initially with low-order noise and a 

noticeable drop of its count before picking up again, Here, it 

is important for the reasoner to make sure that only 

monotonic information is being processed since the damage 

cannot have a negative slope. The debris sensor is also 

shown to saturate at a particular value. Again it is important 

for the reasoner to take this sensor behavior into account 

when aggregating information from the debris sensor. Figure 

11 (a) shows the spall propagation model that has been 

correctly triggered at about time step 300 as a result of both 

the debris and the vibration information. The aggregated 

output is shown in Figure 11 (d) which shows the increasing 

damage of the bearing as a function of spall propagation 

model, vibration sensor, and debris sensor. 

Data from rig tests will be included in the analysis 

throughout the rig tests. As of writing this report, they have 

not commenced yet. Results of an integrated engine level 

demonstration test will be reported in an upcoming paper.  

6. SUMMARY & CONCLUSIONS 

We have presented initial concepts for an in-flight bearing 

prognostics reasoner. This reasoner is part of a suite of tools 

that comprise the integrated bearing prognostics system 

where the diagnostic information is aggregated during flight 

to provide short-term predictive capabilities. Longer term 

predictive capabilities are provided off-board and involve 

the calculation of component damage conditional on 

expected load conditions. The in-flight reasoner shown here 

allows the aggregation of both model-based damage 

information with sensor-based evidential information. 

Emphasis is placed on processing the information to ensure 

that the model – which relies on the reasoner to provide it 

with trigger information to get started – does not get kicked 

off either prematurely or too late. In addition, the sensor 

information and the model information are used within the 

reasoner jointly as mutual safeguards that provide important 

checks on their respective performance. Reasoner functions 

deal with conditioning the sensor signals as well as 

performing the aggregation. The former is embodied in 

several modules that modify the signal and manipulate an 

associated uncertainty. Different techniques (including T-

norm based operators and ANFIS) are in place for the 

aggregation and have been tested on simulated data. The 

final choice will be driven by the best achieved 

performance. This decision will be made at the conclusion 

of a data collection period on rig tests which will also 

provide ground truth data. 
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